
Fermi National Accelerator Laboratory 

FExMuABconf-92/43 

Experience with MODSIM II 

J. Streets, D. Berg, G. Oleynik, R. Pordes and D. Slimmer 

Fermi National Accelemtor Laboratory 
.P.O. Box 500, Batavia, Illinois 60510 

February 1992 

Presented at the Second International Workshop on Sofiware Engineering, Artificial Intelligence and Expert 
Software for High Energy and Nuclear Physics, L’Agelonde France-T&corn La Londe-les-Maures, 
January 13-l&1992. 

= Opatd bj Universities Research Assixiatim Inc. under CMltracl No. DE-ACQZ-76CHO3WJ tih tie Unfid States Deparbnent of Energy 



This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of 
their employees, makes any warmnty, express OP implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, OP represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product. process. or service by trade 
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its 
endorsement, recommendation, or favoring by the United States Government or any 
agency thereof The views and opinions of authors expressed herein do not necessarily state 
or reflect those of the United States Government or any agency thereof 



Experience with MODSIM II 

J.Streets, D.Berg, G.Oleynik, R.Pordes, D.Slimmer. 

Femi National Accelerator Laboratoryt, 
Batavia, IL 60510, USA. 

ABSTRACT 

We present results of computer simulations for Data Acquisition systems for 
lar e fixed target experiments in an object oriented simulation language, MOD- 
Sdi. Th’ p . 1s pa er summarises our experiences and 
from the simu atlons already completed. We also in g. 

resents prelirmnary results 

for this project. 
lcate the resources required 

1 The Problem. 

On Line Support at FNAL is desi 
the next fixed target run, schedule pr. 

ning a new Data Acquisition (DA 
1 

system for 
m 1994. This system must serve arge experi- 

ments which read data from the front end electronics at a rate of lOOMbytes/second, 
and require a software event filter to reduce the rate of data written to tape to 
lOMbytes/second. The same system should also be scalable, down to lMbytes/second 
for test beam experiments. The data will be read out from multiple streams of CA- 
MAC and FASTBUS. We would like to use cost effective UNIX* computers as backend 
Filter Processors (FP) for online event selection. 

Preliminary studies have found’ several possible architectures using: 

VDAS buffers 
VSB/VME dual ported (DP) memories 
In house DP Stream Memories with IO adapter 
DP VME/ECL memories 
Vertical Busses 
Ultranet, HPPI and In House Switches 

2 Why Simulate ? 

Each architecture listed above has potential problems with performance, cost, avail- 
ability and complexity. It is impossible to build some of these systems today as not 
all hardware has been designed. Limitations of people and money prohibit building 
full scale test systems for several of these architectures. 

Computer simulations can help decide whether these architectures will work 
at the data rates required. Simulations can also help define the hardware requirements 
of modules which are still to be designed. The software algorithms which must run 
in the processors to build events can also be prototyped and tested in the computer 
simulation. 

*MODSIM II is a re@stered Trade Mark of CACI Products Company, 
3344 North Torrey Pmes Court, La Jolla, CA 92037, USA. 
+Sponsored by DOE contract number DEACOZ-76CH03000. 
*UNIX is a registered trademark of UNIX System Laboratories. 



‘ii Gate Live % EnfferUsc 

Figure 1: Example of menu and graphics widgets 

A simulation of the different architectures will identify the cheapest working 
solution and also help tune parameters to find potential bottlenecks and maximise 
efficiencies of the different sub-systems. Once an architecture has been found the 
simulation will be used to find the best configuration parameters, such as the numbers 
of CAMAC and FASTBUS streams, if memory should be added to buffers or filter 
processors, or how variations in the word counts from detectors will affect the system. 
These changes could be found from the hardware, but it will be far easier to get an 
estimate from running the simulation. 

3 Why MODSIM ? 

The language we choose for the simulation needs to satisfy some basic requirements. 
The project should generate reusable software in order to minimise software devel- 
opment for each different architecture. The various parameters of the DA systems 
should be configurable at run time. The running programs should be easy to monitor 
so that we can find system bottlenecks. This type of monitoring is best done with 
graphical displays. The DA systems all contain many processes running concurrently, 
and the simulation language must support control of these processes and interprocess 
communication. 

MODSIM II was chosen for its support of object oriented programming and 
for large process-based simulations2. 
laboratories3 

This language has also been used by other 
Other simulation languages, such as Verilog and SESWorkbench were 

found to be aimed at finer scale simulations, or not sufficiently developed for our use. 
Writing a simulation in C was considered an inefficient use of resources. 



Architecture AlA 

VDAS 
tuffen 

Figure 2: Diagram of the AIA Data Acquisition architecture 

4 Simple-DA, a first attempt. 

Our first project was a simple DA system which contained one readout controller with 
input and output buffers, a large buffer memory and a tape drive. This project took 
approximately 6 person-weeks. This time include learning object oriented techniques, 
and the MODSIM language. 

A graphical monitoring display was then added. This took about 2 person- 
weeks, again this time includes learning the MODSIM language. The results can be 
seen m figure 1. Another week of trying the menu widget produced an interface to 
enable the modification of initialization parameters. 

The simulation was not designed to be expandable to a larger system, and 
so was not developed further. However it was found useful as a tool to learn about 
the functionality of the MODSIM class library, and some of its limitations. 

5 VME bus simulation. 

The next project was to write a set of re-usable set of classes to simulate a VME 
bus. The VME object is present in all proposed architectures and has a potential 
for limiting event throughput. We used ROSE* to both design and document the 
project. 

A class of objects were written to simulate a VME bus with either a coarse 
or fine granularity. The coarse grained bus has the following properties. 

- Only one master can use Bus. 
Masters are queued in order of request. 

The fine grained bus has these additional features. 

*Rational Rose is a tradmark or Rational, 
3320 Scott Boulevard, Santa Clara, CA 95054-3197, USA. 



- Obeys priorities (O-3) and slot position. 
- Round Robin or priority scheduling. 
- Timeouts are implemented. 
- Single word and block transfers are recognised. 
- Data can be written in 256 byte blocks. 

These objects took approximately four weeks for one person to implement. Some of 
this time was spent learning the ROSE CASE tool. 

6 AlA, a second attempt. 

Our next attempt was a DA system which is similar to the fastest DA running4 at 
FNAL, but modified for our requirements. This took 3 weeks for one person to design 
and implement. The system required over 200 initialization parameters, and we found 
that the MODSIM menu interface was unsuitable, so we wrote our own class called 
ConfigFile, which has a similar format to Xdefaults’ files. This took about a week. 

The AlA simulation uses no inheritance and the use of MODSIM interrupts 
was restricted to the Exabytet simulation routines (a feature of the architecture). 
Only the random number generator was used from the MODSIM class library. 

Consistancy checks performed to verify correct working of the model include 

- The number of words read from the front end modules equals the number 
of words written to tape. 
- The event numbers from subevents are compared during event building. 
- The front end modules receive the same number of triggers. 
- The measured deadtime compares well with the prediction from the front 
end module read out time. 

7 Using the AlA simulation. 

We used the model to simulate the readout from a proposed Kaon experiment5. By 
varying the number of VME crates in the system we could find the most cost effective 
solution to the problem of how many VME crates should be used for the fixed number 
of Filter Processors in the system. The number of events processed during one full 
spill, as a function of the number of VME crates used to distribute 16 processors, was 
as follows. 

The jobs ran for 16 hours on a Sun 4/75 (SPARCstation 2), and required 
170 Mbytes of virtual memory. Each job simulated 120 seconds of beam time. The 
decreasing number of events can be explained by the protocol used to queue the 
processors by the event builder controller. The simulation suggests that we can halve 
the number of VME crates with only a 4% loss in event throughput. 

‘X Window System is a trademark of the Massachusetts Institute of Technology 
+Exabyte is a trademark of the Exabyte Corporation 



8 Next Steps. 

We would like to use the VME bus object to verify results from the AlA model. 
We are adding graphics to AlA to aid identification of bottlenecks, and presentation 
to customers. We want to find a set of parameters to satisfy the requirements of 
the FNAL experiments which will run in 1994. We plan to create models of other 
architectures mentioned above (testing the reusability of the code). It will also be 
possible to force errors in the system, to see how the models recover from hardware 
and software failures, such as power supply failure, system floating point interrupions 
and bit errors in the front end modules. We will later simulate the run control and 
system initialization, and upgrade to a later version of MODSIM. 

9 Summary and Impressions. 

We have used MODSIM to simulate a data aquisition system, and found useful results. 
We have used the MODSIM librarian to support multi-user environment. Response 
from the CACI telephone support is quite good. Courses are available and we have 
found them instructive but not necessary. The SunOS’ graphical displays are suf- 
ficiently compatible that, although MODSIM is supported only under the SunOS 
UNIX operating system, we can run the programs from any X terminal. 

Our simulations are near the reasonable limits of CPU and memory, and 
we are near the limits of version 1.6 of the MODSIM II compiler, as we have found 
several problems. We find that MODSIM is easier to use without inheritance, and 
is more suited to large scale simulations. We have found difficulties in producing 
object oriented code which is reusable without minor modifications of the original 
definitions. 

Finally, we wish to stress that the results of a computer simulation are only 
as good as the assumptions and predictions upon which it is based. 

References 

1. D.Berg, G.Oleynik, R.Pordes, J.Streets and D.Slimmer. DART - A New High 
Speed Data Acquisition System, System Concept. FNAL Internal Note DS217, 
October 1991. 

2. CACI Products Company. MODSIM II The Language for object orknted pro- 
gramming - Tutorial. May 1991. 

3. E.C.Milner, A.W.Booth, M.Botlo and J.Dorenbosch. Data Aquisition Studies fog 
the Superconducting Super Collider. Proceedings of the IEEE Seventh Conference 
REAL TIME June 1991 p. 30. 

4. See for instance 
C.Gay and S.Bracker. Transactions on Nuclear Science, NS-34. 4 1987. and 
A.Baumbaugh. The Video Data Acquisistion Smtem /VllASl F 
port, July 1990. 

-=- , -.--, _ ‘NAL internal re- 

5. S.Childress, S.Cihangir, R.Coleman, M.Crisler, R.Ford, Y.B.Hsiung, D.Jensen, 
E.Swallow, Y.Wah. Design Report and Impact for the KTev Program FNAL Re- 
port, June 1991. 

‘SunOS is a registered trademark of Sun MicroSystems 


